On the Calculation of a Perfect Gem Equivalent Value for Arbitrary Rune Combinations in Diablo 2: Resurrected

May 11, 2022

By: Osvaldo Enriquez
Email: ozzy@d2charsifood.com

Abstract

The game Diablo 2: Resurrected (D2R) is an online action role playing game with a vibrant user driven economy. However, it does not necessarily offer a good liquid currency to facilitate trading within the game. There is gold in the game, but it is generally so easily obtained that is holds little to no value amongst the user base. Thus, most users tend to use runes as a form of currency.

Unfortunately, valuing runes vs each other is not a straight forward task. In fact it is so inconvenient to use runes as currency that a significant portion of the trading economy has resorted to a website controlled digital currency called forum gold ${ }^{[1]}$.

Runes can be combined to create higher runes, which acts as a hard cap on the relative value of runes vs one another. Though in reality the actual value of runes is driven both by their usefulness in runewords, and their relative scarcity through ladder seasons ${ }^{[2]}$.

The goal of this paper is to calculate a "perfect gem equivalent" for every individual rune so that combinations of runes can be objectively compared to one another.

We will define an initial set of common rune trades based off of my own personal market observations. This initial set will be used to calculate a best-fit model where each value is assigned a scalar pgem equivalent.

Furthermore, we will demonstrate how the calculations can be expanded to include an arbitrary number of rune trades to calculate a best-fit model. d2CharsiFood.com uses real market trade data to constantly refine and re-calculate the best-fit pgem equivalent model.

Runes

There are 33 total runes in D2R. Runes can be combined to form higher runes. The following table lists the possible runes, and the rune combination to make them:

	Rune	Cube Recipe
1	El	N/A
2	Eld	$3 \times$ El
3	Tir	$3 \times$ Eld
4	Nef	$3 \times$ Tir
5	Eth	$3 \times$ Nef
6	Ith	$3 \times$ Eth
7	Tal	$3 \times$ Ith
8	Ral	$3 \times$ Tal
9	Ort	$3 \times$ Ral
10	Thul	$3 \times$ Ort
11	Amn	$3 \times$ Thul + chipped Topaz
12	Sol	$3 \times$ Amn + chipped Amethyst
13	Shael	$3 \times$ Sol + chipped Sapphire
14	Dol	$3 \times$ Shael + chipped Ruby
15	Hel	$3 \times$ Dol + chipped Emerald
16	Io	$3 \times$ Hel + chipped Diamond
17	Lum	$3 \times$ lo + flawed Topaz
18	Ko	$3 \times$ Lum + flawed Amethyst
19	Fal	$3 \times$ Ko + flawed Sapphire
20	Lem	$3 \times$ Fal + flawed Ruby
21	Pul	$3 \times$ Lem + flawed Emerald
22	Um	$2 \times$ Pul + flawed Diamond
23	Mal	$2 \times$ Um + Topaz
24	Ist	$2 \times$ Mal + Amethyst
25	Gul	$2 \times$ Ist + Sapphire
26	Vex	$2 \times$ Gul + Ruby
27	Ohm	$2 \times$ Vex + Emerald
28	Lo	$2 \times$ Ohm + Diamond
29	Sur	$2 \times$ Lo + flawless Topaz
30	Ber	$2 \times$ Sur + flawless Amethyst
31	Jah	$2 \times$ Ber + flawless Sapphire
32	Cham	$2 \times$ Jah + flawless Ruby
33	Zod	$2 \times$ Cham + flawless Emerald

Example

This is a small example to demonstrate the calculations.

Example Initial Trade Sample Set

The following equations demonstrate some of the most common rune trades:
(1) $2 x \mathrm{Lem}=\mathrm{Pul}$
(2) $\mathrm{Lem}+\mathrm{Pul}=U m$
(3) $2 x L e m+$ Pul $=U m$
(4) $40 x$ Perfect Gems $=$ Pul

Notice that equations (2) and (3) are already mathematically contradictory unless Lem $=0$. But Lem cannot $=0$ in any reasonable pgem equivalent model.

We can rewrite those 4 equations as a matrix equation:
(5) $\left[\begin{array}{cccc}0 & 2 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & 1 & 0 \\ 40 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}\text { pgems } \\ \text { Lem } \\ P u l \\ U m\end{array}\right]=\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}\text { pgems } \\ \text { Lem } \\ \text { Pul } \\ U m\end{array}\right]$

Now we can subtract to get all the unknowns on the same side.
(6) $\left[\begin{array}{cccc}0 & 2 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & 1 & 0 \\ 40 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}\text { pgems } \\ \text { Lem } \\ \text { Pul } \\ U m\end{array}\right]-\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}\text { Pgems } \\ \text { Lem } \\ \text { Pul } \\ U m\end{array}\right]=0$
(7) $\left[\begin{array}{cccc}0 & 2 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 2 & 1 & -1 \\ 40 & 0 & -1 & 0\end{array}\right]\left[\begin{array}{c}\text { pgems } \\ \text { Lem } \\ P u l \\ U m\end{array}\right]=0$

Now we have a matrix equation in the form of $A x=0$. Since we know equations (2) and (3) are contradictory, we know that there is no real solution for x (except $x=0$). However, we can use Singular Value Decomposition ${ }^{[3]}$ to find the best-fit, non-zero, solution for x.

Running SVD on equation (7) and then normalizing so pgems $=1$ yields:

$$
\left[\begin{array}{c}
\text { pgems } \\
\text { Lem } \\
\text { Pul } \\
U m
\end{array}\right]=\left[\begin{array}{c}
1 \\
18.5 \\
40 \\
68.7
\end{array}\right]
$$

Python Code

```
import numpy as np
# define the A matrix
A = np.matrix([
    [0, 2, -1, 0],
    [0, 1, 1, -1],
    [0, 2, 1, -1],
    [40, 0, -1, 0],
])
# run SVD
u, s, vh = np.linalg.svd(A)
# transpose the V matrix, cus Python is weird...
vh = np.transpose(vh)
# grab the last column from the v matrix
best_vals = vh[:, -1]
# grab the raw value for pgems
pgem_val = best_vals[0, 0]
# divide all values by pgem value to normalize pgems to 1
best_vals = best_vals / pgem_val
print(best_vals)
```


Initial Trades Sample Set

The following table lists the initial trade sample set used to train the initial model:

1	2x Lum	1x Ko
2	1x Lum $+1 \times$ Ko	1x Fal
3	2x Lum + 1x Ko	1x Fal
4	2x Ko	1x Fal
5	1x Lum + 2x Ko	1x Fal
6	$2 x$ Lum + $2 x$ Ko	1x Fal
7	1x Ko + 1x Fal	1x Lem
8	2 K Ko $+1 \times \mathrm{Fal}$	1x Lem
9	$2 \times$ Fal	1x Lem
10	1x Ko $+2 x \mathrm{Fal}$	1x Lem
11	2 K Ko +2 FFal	1x Lem
12	1x Fal + 1x Lem	1x Pul
13	2x Fal + 1x Lem	1x Pul
14	2x Lem	1x Pul
15	1x Fal + 2 x Lem	1x Pul
16	$2 \mathrm{FFal}+2 \times$ Lem	1x Pul
17	1x Lem + 1x Pul	1x Um
18	$2 \mathrm{Lem}+1 \times$ Pul	1x Um
19	$1 \times \mathrm{Fal}+1 \times$ Lem $+1 \times$ Pul	1x Um
20	$2 \mathrm{FFal}+1 \times$ Lem $+1 \times$ Pul	1x Um
21	$1 \times \mathrm{Pul}+1 \mathrm{U}$ Um	1x Mal
22	1x Lem $+1 \times$ Pul $+1 \times$ Um	1x Mal
23	$2 \mathrm{Lem}+1 \times \mathrm{Pul}+1 \times$ Um	1x Mal
24	$1 \mathrm{UUm}+1 \times \mathrm{Mal}$	1x Ist
25	$1 \times \mathrm{Pul}+1 \times \mathrm{Um}+1 \times \mathrm{Mal}$	1x Ist
26	$1 \times$ Lem $+1 \times$ Pul $+1 \times$ Um $+1 \times \mathrm{Mal}$	1x Ist
27	$2 \mathrm{Lem}+1 \times \mathrm{Pul}+1 \mathrm{lum}+1 \times \mathrm{Mal}$	1x Ist
28	$1 \mathrm{MMal}+1 \mathrm{lst}$	1x Gul
29	$1 \mathrm{xUm}+1 \times \mathrm{Mal}+1 \mathrm{l}$ Ist	1x Gul
30	1x Pul + 1x Um + 1x Mal + 1x Ist	1x Gul
31	1 x Ist $+1 \times \mathrm{Gul}$	1x Vex
32	$1 \times \mathrm{MaI}+1 \mathrm{lst}+1 \times \mathrm{Gul}$	1x Vex
33	1x Gul + 1x Vex	1x Ohm
34	1x Ist + 1x Gul + 1x Vex	1x Ohm
35	1x Vex + 1x Ohm	1x Lo
36	1x Gul + 1x Ohm	1x Lo
37	1x Ist + 1x Ohm	1x Lo
38	1x Ohm	1x Lo
39	1x Ohm	1x Sur
40	1x Lo	1x Sur
41	1x Ist + 1x Ohm	1x Sur
42	1x Ist $+1 \times$ Lo	1x Sur
43	1x Ohm + 1x Sur	1x Ber

44	1x Lo + 1x Sur	1x Ber
45	1x Vex + 1x Sur	1x Ber
46	1x Ohm + 1x Sur	1x Jah
47	1x Lo + 1x Sur	1x Jah
48	1x Vex + 1x Sur	1x Jah
49	1x Ber	1x Jah
50	1x Cham	1x Zod
51	1x Ohm	1x Cham
52	1x Ohm	1x Zod
53	1x Lo	1x Cham
54	1x Lo	1x Zod

The initial pgem equivalent values differ for each region (hardcore/softcore, ladder/non-ladder). For this example, we will continue with $40 \times$ pgems $=$ Pul.

Following the same model as the above example, we get:

	Rune	Pgem Equivalent
	Pgem	1
17	Lum	1.9
18	Ko	3.27
19	Fal	8.24
20	Lem	17.2
21	Pul	40
22	Um	73.51
23	Mal	156.20
24	Ist	275.11
25	Gul	491.62
26	Vex	988.67
27	Ohm	1582.8
28	Lo	1829.34
29	Sur	1939.98
30	Ber	3457.08
31	Jah	3457.08
32	Cham	1744.03
33	Zod	1744.03

References

1. d2jsp.org forum gold faq:
https://forums.d2jsp.org/info.php?p=35
2. Thread on reddit explaining ladder seasons:
https://www.reddit.com/r/Diablo/comments/1mblsc/can anyone explain me what ladder is L
3. Python Numpy svd method:
https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html
